Atmosphere Pro

White Paper

V 4.5.0 @ January 2020

@Copyright 2013-2020 Async-10.org

Atmosphere Satellite

How to install Satellite

Reaching the Maximum Atmosphere Pro Licenses
Configuring Satellite using Hazelcast’s hazelcast.xml
Configuring Satellite using Hazelcast using web.xml only
Configuring Satellite using external Hazelcast Support
Configuring Satellite using external Hazelcast Client
How replication works

Broadcaster Replication

AtmosphereResource Replication
AtmosphereResource Retrieval

Message Replication

Failing to deliver a message

Configuring Satellite Receiver Thread Pool for optimal performance

Atmosphere Tower Control

Installing Tower Control

Starting Tower Control
io.async.control.AsyncSupport
io.async.control.AtmosphereFramework
io.async.control.broadcaster
io.async.control.cache
io.async.control.config
io.async.control.factory

io.async.control.interceptors

10
11
12
13
13
14
14
15
17
18
19
19
20
20
21

io.async.control.resource
io.async.control.statistics
io.async.control.websocket
Atmosphere Postman
How to install Postman
Installing the client side
Callbacks

How it works

21
22
22
23
23
24
24
24

Atmosphere Satellite
Applications using Atmosphere Satellite gain the following superpowers:

Elastic Scalability (just add more servers and they cluster auto magically, i.e.
automatically)

Super Speeds (in memory transaction speeds)

High Availability

Fault Tolerance

Cloud Readiness

100% State Replication of AtmosphereResource, Broadcaster and
BroadcasterCache

Powered by Hazelcast 3.x (www.hazelcast.org): An In-Memory Data Grid

Atmosphere Satellite is easily able to handle this type of use case with in-memory
performance, linear scalability as you add new nodes and reliability.

Satellite is small and gets transparently enabled by Atmosphere. Because of its
design approach as well as Satellite’s ability to automatically discover and cluster
with peers, Satellite provides drop-in session clustering ability for any Atmosphere
enabled server. [t requires no additional investment in hardware and elastically
scales as you add Atmosphere’s application. This is a great way to ensure that
Atmosphere's session state is maintained when you are clustering Atmosphere
servers.

= N
e

How to install Satellite

To install Satellite, all you need to do is to add the following dependency in your
pom.xml:

<dependency>
<groupld>io.async</groupld>
<artifactld>atmosphere-satellite</artifactld>
<version>2.5.3</version>

</dependency>

Atmosphere will auto-detect the jar and will install Satellite automatically. Once
installed, you should see in your log:

Sep 12,2014 11:02:17 AM com.hazelcast.cluster.Multicastfoiner
INFO: [10.0.1.4]:5701 [dev]
Members [1] {

Member [10.0.1.4]:5701 this
}
Sep 12,2014 11:02:17 AM com.hazelcast.core.LifecycleService
INFO: [10.0.1.4]:5701 [dev] Address[10.0.1.4]:5701 is STARTED
11:02:17.098 INFO [main] i.a.s.Satellite [Satellite.java:81]

Atmosphere Satellite e6ba40a1-29ab-493c-9295-30bcc7a2aaea
11:02:17.106 INFO [main] o.a.c. AtmosphereFramework [AtmosphereFramework.java:1906]
Auto detecting WebSocketHandler in /WEB-INF/classes/

When another Atmosphere Satellite instance is getting installed, the log for the first
installation will show

Sep 12,2014 11:14:31 AM com.hazelcast.cluster.ClusterService
INFO: [10.0.1.4]:5701 [dev]
Members [2] {
Member [10.0.1.4]:5701 this
Member [10.0.1.4]:5702
}
Addition and removal of Atmosphere Satellite are dynamic and will always be
reflected in the log of each Atmosphere Satellite installation. You can also browse
Satellite’s MBeans using your favorite JMX client under the ‘io.async.satellite’
package.

Reaching the Maximum Atmosphere Pro Licenses
If you install more Atmosphere Pro instances than the number bought, any new
instance will throw

io.async.satellite.Satellite$MaxLicensesException: Maximum Licenced Satellite 27

at io.async.satellite.Satellite.dispatchMessage(Satellite.java:164)

at io.async.satellite.Satellite.access$100(Satellite.java:46)

at io.async.satellite.Satellite$2.on(Satellite.java:79)

at
io.async.satellite.HazelcastSatelliteTransport$1.onMessage(HazelcastSatelliteTransport.java:
43)

at com.hazelcast.topic.impl.TopicService.dispatchEvent(TopicService.java:135)

at
com.hazelcast.spi.impl.EventServicelmpl$EventPacketProcessor.process(EventServicelmpl.ja
va:545)

at
com.hazelcast.spi.impl.EventServicelmpl$RemoteEventPacketProcessor.run(EventServicelm
pljava:625)

at com.hazelcast.util.executor.StripedExecutor$Worker.process(StripedExecutor.java: 189)
at com.hazelcast.util.executor.StripedExecutor$Worker.run(StripedExecutor.java:173)

Please contact licenses@async-io.org for more licenses.

mailto:licenses@async-io.org

Configuring Satellite using Hazelcast’s hazelcast.xml
You can configure Hazelcast by following the normal way, as recommended by the
Hazelcast team

http://hazelcast.org/docs/latest/manual /html/config.html

By default, a Hazelcast instance named “AtmosphereSatellite” will be created. If your
application already use a HazelcastInstance or want to create a new instance with a
different name, just define in web/atmosphere.xml:

<init-param>
<param-name>io.async.satellite. HazelcastSatelliteTransport.instanceName</ param-name >
< param-value > <<name>> </ param-value >
</init-param>

If the HazelcastIinstance name exists, it will be picked and if not, created. It is strongly recommended
to configure Hazelcast instance via hazelcast.xml

There might be transient failures when publishing on a topic. Satellite allows to automatically retry a
publish that failed. You can configure it by settings a value for the following init parameters:

io.async.satellite.HazelcastSatellite Transport.topicPublish.numRetries: Number of retries that Satellite
with do before failing a publish. Default: 0 (no retry).

io.async.satellite.HazelcastSatelliteTransport.topicPublish.delaySeconds: delay in seconds before
retrying a publish that failed. Default: 1.

Configuring Satellite using Hazelcast using web.xml only
If your application only use Hazelcast TCP/IP configuration, you can also configure
it directly using the following properties

<init-param>
<param-name>io.async.satellite.HazelcastSatellite Transport.tcplp.enabled</param-name>
<param-value>true</param-value>

</init-param>

<init-param>
<param-name>io.async.satellite.HazelcastSatellite Transport.tcplp.members</param-name>
<param-value>5701</param-value>

</init-param>

<init-param>
<param-name>io.async.satellite.HazelcastSatellite Transport.group.name</param-name>
<param-value>opd-poc</param-value>

</init-param>

<init-param>
<param-name>io.async.satellite.HazelcastSatellite Transport.group.password</param-name>
<param-value>opd-poc-pass</param-value>

Configuring Satellite using external Hazelcast Support
You can configure Satellite’s internal Hazelcast instance by implementing an HazelcastConfigurator:

io.async.satellite

com.hazelcast.core.Hazelcastinstance
org.atmosphere.cpr.AtmosphereConfig

HazelcastConfigurator {

HazelcastInstance getOrCreateHazelcastInstance(AtmosphereConfig config)

}
and by defining

<init-param>
<param-name>io.async.satellite.HazelcastConfigurator.className</param-name>
<param-value>xxxxx</param-value>

</init-param>

Configuring Satellite using external Hazelcast Client
If you already have a running Hazelcast instance, you can also configure Satellite to use it instance by
adding to your configuration file:

<init-param>
<param-name>io.async.satellite.HazelcastSatelliteTransport.useClient</param-name>
<param-value>true</param-value>

</init-param>

<init-param>
<param-name>io.async.satellite.HazelcastSatellite Transport. </param-name>
<param-value> </param-value>

</init-param>

How replication works
A Satellite always publishes its state at the moment it changes. Changing states
includes:

e Broadcaster: when a Broadcaster is created by one Satellite, a message will
be sent to all others Satellites, asking them to create the Broadcaster. Hence
all available Satellites will have the same set of created Broadcasters. The
same will happen when a Broadcaster is destroyed from one of the Satellite,
e.g. the removal will also be execute by all Atmosphere Satellite.

e AtmosphereResource: when an AtmosphereResource is created (when a
users/browsers connects), a message will be sent to all others Satellites,
asking them to register the AtmosphereResource’s UUID with its associated
broadcaster. When an AtmosphereResource gets registered with a
Broadcaster, the AtmosphereResource becomes candidate for message
caching. The same will happens when an AtmosphereResource gets removed.

e BroadcasterCache: BroadcasterCache are tightly coupled with Broadcaster.
Hence, BroadcasterCache are getting created everytime a Broadcaster is.
Every time a new AtmosphereResource is added to a Broadcaster, a message
will be sent to all others Satellites, and the AtmosphereResource’s UUID will
be added to the list of active BroadcasterCache’s.

Broadcaster Replication
As noted, Broadcaster are getting replicated by following:

1. Ina Satellite, a Broadcaster is getting created (#1)
2. The Satellite send a message to other Satellites (#2)
3. The Broadcaster is created in the other Satellite (#3)

#3 Create

AtmosphereResource Replication

When a user/browser connect, an AtmosphereResource is always created. With
Satellite, the UUID of that AtmosphereResource will be shared amongst the
Satellites:

Browser connects

AtmosphereResource gets created

The Atmosphere’s UUID is sent to all Satellites

The UUID is registered with BroadcasterCache. Registering UUID with
BroadcasterCache means message will be cached for that resource unless
one of the Satellite successfully deliver the message.

B W

|

#4 Register with
BroadcasterCache

10

AtmosphereResource Retrieval

[t is possible to retrieve an AtmosphereResource located on another node by using
the AtmosphereResourceFactory.locate(uuid, Async) API. Under the hood class
AtmosphereResourceFactory will communicates with the remove Satellites and
create a local “stub” for the remote AtmosphereResource if located.

Jlocate(message.getMessage()
AtmosphereResourceFactory.Async() {
@Override
available(AtmosphereResource r) {

The operation of locating an AtmosphereResource is asynchronous, and it is left to
the application developer to block in case of the retrieval must be done
synchronously:

AtomicReference<AtmosphereResource> resource
= AtomicReference<AtmosphereResource>()
CountDownLatch latch = CountDownLatch(1)

Jlocate(message.getMessage()
AtmosphereResourceFactory.Async() {
@Override
available(AtmosphereResource r) {
resource.set(r)
latch.countDown()

})

latch.await()

AtmosphereResource stub = resource.get()
stub.write()

11

Message Replication

When a message is broadcasted in one Satellite, the message will be sent to all
Satellites, which in turn will broadcast to their set of AtmosphereResources and
cached for AtmosphereResource not located on that Satellite.

As soon as the message is successfully delivered in one Satellite, the information will
be sent to all other Satellites so they can remove the message from their
BroadcasterCache.

#2 read
message

L

#3 Sent
message

delivery OK
#4 Clear message for

UUIDs

for UUIDs

12

Failing to deliver a message

If, for any reason the message is not delivered to the AtmosphereResource, the
message will stay in all Satellite’s BroadcasterCache so when the browser
reconnects using its previous AtmosphereResource’s UUID, the message will be
pulled from the cache and send. Then all Satellites will be advised the message has
been delivered and

#2 Create Atmosphere, looks
in the BroadcasterCache
using UUID. Found, send

message

#1 Browser
with
previous
UuID

#3 Sent

01010} #4 Clear UUID with

BroadcasterCache

—_—

Configuring Satellite Receiver Thread Pool for optimal performance
If your application sends and receives thousand of messages, it is important to
properly configure the Satellite’s receiver thread pool size:

<init-param>
<param-name>io.async.satellite.HazelcastSatellite Transport.threadPoolSize</param-name>

<param-value>200</param-value>
</init-param>

By default, the number of available processors will be used.

13

Atmosphere Tower Control

Atmosphere Tower Control is designed with ease of use and flexibility in mind and
delivers unprecedented power to Atmosphere’s Developers. Atmosphere Tower
Control is a complete ecosystem for developers, offering a complete end to end
solution for monitoring an debugging an Atmosphere application.

Tower Control offers the ability to completely configure Atmosphere, collect
statistics, reload Atmosphere applications and hot swamp an Atmosphere
applications remotely.

Installing Tower Control
To install Satellite, all you need to do is to add the following dependency in your
pom.xml:

<dependency>
<groupld>io.async</groupld>
<artifactld>atmosphere-tower-control</artifactld>
<version>2.4.6</version>

</dependency>

Atmosphere will auto-detect the jar and will install Tower Control automatically.
Once installed, you should see in your log:

11:56:17.411 INFO [main] o.a.c.AnnotationHandler [AnnotationHandler.java:63] Found
Annotation in class io.async.control. TowerControllnterceptor being scanned: interface
org.atmosphere.config.service.AtmospherelnterceptorService

11:56:17.537 INFO [main] i.a.c. TowerControlinterceptor [TowerControlinterceptor.java:58]
Atmosphere Tower Control

11:56:17.538 INFO [main] o.a.c.AnnotationHandler [AnnotationHandler.java:63] Found
Annotation in class io.async.control. TowerConttrolListener being scanned: interface
org.atmosphere.config.service.BroadcasterListenerService

- 14

Starting Tower Control
To start Tower Control, all you need to have is a tool supporting JMX. For example,
both Java Mission Control(JMC) and jVisualVM supports JMX. Let’s assume we will
use JMC. To start JMC, just do:

% jmc

(B vm Browser 3% Event Types | = 3
b P The JvM Running Mission Control
P /2 [1.6.0_65] -Dfile.encoding =UTF-8 (31947)

b %[z [1.6.0_65] -Xbootclasspath/a:/System) Library/Pr |

%2 [L6.0_65] org.jetbrains.idea.maven.server.Remot

¥ %2 org.codehaus.plexus.classworlds.launcher.Launct

i3 MBean Server
» B Flight Recorder

@ Overview
» Historical Data Settings
~ Dashboard

Used Java Heap Memory

—r
_'\3040 T
4 X

Yo 8 0
I \
o .o

. -
Now: 49.4 MiB Max: 49.4 MiB
~ Processor

100%

Oracle Java Mission Control

= [a] org.codehaus. plexus. classworlds launcher.Launcher jetty:run (2383) 53

JVM CPU Usage

L, ——.._,\ = i
Now: 0.0431% Max: 1.41%

s

Live Set + Fragmentation

2

o

2 . c
Now: 6.36 % Max: 6.36 %

0%

80%
0%

60%

)
50% J\

0%

|
30% J \‘
|

0%

0%

') S— - .
12:06:26 PM 12:06:33 PM 12:06:40 PM

~ Memory

56 MiB

12:06:47 PM 12:06:54 PM 120701PM 12:07:08 PM

12:07:15 PM

12.07.22PM

48MiB

40 MiB

32Mie

24MiB

16 MiB

BMiE

1]
12:06:26 PM 12:06:33 PM 12:06:40 PM

12:06:47 PM 12:06:54 PM 12:07:01PM 12:07:08PM

[Overview | % MBean Browser | <i» Triggers | § System | %7 Memory | ;@ Threads | &+ Diagnostic Commands

12:07:15 PM

1207:22PM

Ve S Ry
3 o

% L

¥ M CPU Usage
¥ [l Machine CPU Usage

e

) [l Committed Java Heap

| [l Maximum Java Heap

") [JTotal Physical Memory
¥ [l Used Java Heap Memory
) [used Physical Memory

% &

® @ e |4

@x

Next, select under the JVM Browser Tab, select the Java process, which started your
Atmosphere Application. On the right side, select the MBean Tab. You should see

15

To make things simpler, type io.async in the Filter field, so we just see Tower
Control Beans

mg.cndehaus.p4exus.classwnrids.lauﬂcher.uunci\zrjeny:run (2383) &2
% MBean Browser
MBean Tree el
Filter: |5 asyne

¥ (= io.async.control
£ AsyncSupport
5 AtmosphereFramework
¥ (= io.async.control.broadcaster
% Broadcaster//
i3 Broadcaster/ /chat
¥ = io.async.control.cache
7 BroadcasterCache//
5§ BroadcasterCache/ /chat
¥ = io.async.control.config
i5 BroadcasterConfig/
5 BroadcasterConfig/ /chat
¥ = lo.async.control.factory
% AtmosphereResourceFactory
£58 BroadcasterFactory
5 WebSocketProcessorFactory
¥ = io.async.control.interceptors
% AtmosphereResourceLifecyclelntercept
5 CacheHeadersinterceptor
£ Corsinterceptor
5 Heartbeatinterceptor
5% IdleResourcelnterceptor
£33 JavaScriptProtocol
5§ SuspendTrackerinterceptor
& TrackMessageSizelnterceptor
¥ = io.async.control.resource
5§ AtmosphereResource/63422b65-c61¢
¥ = io.async.control .statistics
5 AtmosphereStats
i3 BrowserStats
¥ = io.async.control.websacket
5 DefaultWebSocketProcessor

[0E Overview | if MBean Browser < Triggers System ‘% Memory | 1@ Threads | &% Diagnostic Commands

All the Atmosphere’s MBeans are grouped by type:

e io.async.control: Contains information about installed AsyncSupport and

AtmosphereFramework classes.

e io.async.control.broadcaster: The current set of created Broadcaster with

their associated state.

e io.async.control.cache: The current set of created BroadcasterCache with

their associated state.
e io.async.control.factory: The BroadcasterFactory,

AtmosphereResourceFactory and WebSocketProcessorFactory with their

associated state.
e jo.async.control.interceptors: The current set of installed
Atmospherelnterceptor with their associated state.

e jo.async.control.resource: The current set of connected clients, represented

by their AtmosphereResource.

e io.async.statistics: Live statistic like number of connections, messages,

transport used as well as Browser’s used.

16

e io.async.control.websocket: Contains information about installed
WebSocketProcessor

Let’s explore them one by one and see what kind of information is available from
those beans.

io.async.control.AsyncSupport
Attributes

Contains information about the server used and if websocket is supported or
not.

Operations:

No operation available

i® MBean Browser @B
MBean Tree & MBean Features

Attributes | Operations | Notifications | Metadata
Filter: [jp,async |1ipen ons | At)

‘Name &l Value
'B-asvnc-contm‘ [ContainerName jetty/9.1.2.v20148210 with WebSocket enabled
S ASyncSUBDOTT pe— = » Vebsocket true
T

i Atmospl
» (& in.async.control broadcaster
¥ (i0.async.control.cache

P (= io.async.control.config

P (& in.async.control.factory

¥ [I0.async.control.interceptors.
b (= i0.async.control.resource

P [I0.async.control.statistics

> (rio.async.control.websocket

17

io.async.control.AtmosphereFramework
Attributes

Contains information about how Atmosphere has been started and
configured. Everything configured by default or via web/application.xml is
getting reflected.

Operations:

You can reconfigure the AtmosphereFramework via the MBean’s operations.
For example, you can add BroadcasterListener, init-params etc. and then click
on reload to reconfigure the AtmosphereFramework.

MBean Tree

Filter: [ig.async

MBean Features

Attributes | Operations | Notifications | Metadata

Name
[C] AllewAliClassesScan
» [J AnnotationPackages

EAUETEIER jo.async.control type=AtmosphereFramework fessorClassName

P = io.async.control

» (= ioasync.control.cache
» (= io.asyne.control.config
» (= io.async.control.factory

» (= io.async.control.interceptors

P (= lo.async.control resource
¥ (= io.async.control.statistics
» [io.async.control websocket

% W ApplicationAnnotationPackages
[Asyncsupport
» [[] AsyncSupportListeners
[AtmosphereDotxmliPath
» [J AtmosphereHandlers
[[] AtmosphereObjectFactory
[l BroadcasterCacheClassName
[BroadcasterCachelnspectors
[BroadcasterCacheListener
[l BroadcasterClassName
[[]BroadcasterFactoryClassName
[BroadcasterFilters
[BroadcasterLifeCyclePolicy
» [[]BroadcasterListeners.
b [l BroadcasterMappedToAtmosphereHandlers
» [l BroadcasterTypes
¥ [l Defaultinterceptors
[EndpointMapper
Excludedinterceptors
ExternalizeDestroy
¥ [l FilterManipulators
[l HandlerClassPath
» [l nitParams
[[]InterceptorMappedToAtmosphereHandlers
[l Interceprters
[Clisaservietrilter
[LibraryClassPath
[MappingRegex
» [] objectFactoryType
[[]sharedThreadPoals.
[l UseBlockingimplementation
[[] useNativeimplementation
[Juseserviet3o
[[JusestreamForFlushingComments
[webSocketEnabled
[[] webSocketProcessorClassName
[websocketProtocolClassName

[value
‘true

java.util.linkedList, size 1
arg.atmosphere. cpr.Defaul tAnnotationProcessor
java.util.Arraylist, size 4
org.ati here.container.]
java.util.Arraylist, size 1
/META-INF/atmosphere . xml
java.util.HashMap, size 1
arg.atmosphere. cpr. A $0efaul P jectFactory
org.atmosphere. cache .UUIDBroadcasterCache

SupportiithiebSocket

java.util.Arraylist, size ®
java.util.Arraylist, size B

org.atmosphere. cpr.DefaultBroadcaster
org.atmosphere. cpr.Defaul tBroadcasterFactory
java.util.Arraylist, size B

NEVER

java.util.Arraylist, size 1

java.util.HashMap, size 1
java.util.concurrent.ConcurrentlinkedQueve, size 7
java.util.Arraylist, size 11
org.atmosphere.util.DefaultEndpointMapper
java.util.Arraylist, size B

false

jova.util.Arraylist, size 1

/WEB-INF/classes/

java.util.HashMap, size 4

java.util.HashMap, size 1

java.util.Arraylist, size 14

false

/WEB-INF/1ib/

[a-2A-20-9-& *_~=8;\7]+
java.util.concurrent.ConcurrentlinkedQueue, size 3
true

false

false

true

true

true

org.atmosphere . websocket . Defaul thebSocketProcessor
org.atmosphere.websocket. protocol. SimpleHttpProtocol

18

io.async.control.broadcaster
Attributes

Contains information about the current state of a Broadcaster. For example,
the AtmosphereResource, the number of them, the installed
BroadcasterListener, etc.

Operations:

Several operations are available, like adding, on the fly, AtmosphereResource,
broadcasting messages, resuming AtmosphereResources etc.

MBean Tree # MBean Features
Fier: [T Attributes | Operations | Notifications | wetadata
Name [Value
b \&E asyne.control [] AtmosphereResourceCount 1
B AsyncSupport » [l AvmosphereResources java.util.Arroylist, size 1
i Atmosphereframewaori » [BroadcasterListeners java.util.Arraylist, size 2
¥ [[0.25ynC.control.brg=Arasess —
% Broadeaster/; | 10-35Ync.control.broadcaster fheoved j“isi
" | cha
‘& Broadcaster//chat [H LifeCyeleListeners. java.util.Arraylist, size @
P [=-io.async.cantrol.cache [Lifecyclepolicy NEVER
P = lo.async.control.config [[] Messages java.util.Arraylist, size @
P Erio.async.control.factory [[] outoforderBroadeastsupported false
b [io.asyne.control. interceptors [rolicy FIFO
¥ (= io.async.control.resource [scope APPLICATION
¥ [lo.asyne.control statistics [writeQueues Jjava.util.concurrent.ConcurrentiashMap, size @

P (= io.async.control.websocket

io.async.control.cache
Attributes

Contains information about the current state of the BroadcasterCache like
active AtmosphereResource, installed listeners etc.

Operations:

Message can be added,excluded or deleted from the cache

MBean Tree " MBean Features

Attributes | Operations | Notifications | Metadata
Filter: [io.async D

Name value

P (= io.async.contrel ¥ [Activeclients java.util.concurrent.ConcurrentiashMap, size 1
¥ (= 0.async.control.broadcaster 63422b69-c519-415b-2e09-58be3d2a374 1410288193577

a2 Bruadmstﬁ‘ruﬁas ne.contral.broadcaster tymE:Bm.ad(asle/r//‘Ie‘mpenm! Javd.uttl.Avedylich, size 9

1 Broadeast 10:35YNC. - BT istener: java.util.Arraylist, size @
¥ (= io.async.control.cache [Messages java.util.HashMap, size B

i3 BroadeasterCache//

i%3 BroadcasterCache/ fchat
¥ (= 10.async.control.config

2 BroadcasterConfig/ |

i BroadcasterConfig/ fchat
P (= 10.async.control factory
P [io.async.contrel.interceptors.
> (= i0.async.control.resource
b (2= i0.async.control.statistics
b (= i0.async.control websocket

19

io.async.control.config
Attributes

Contains information about the BroadcasterConfig likes Thread, Thread Pool,
etc.

Operations:

You can destroy or remove BroadcastFilter

MBean Tree 7 MBean Features

Filter: |7 Atributes | Operations | Notifications | Metadata
ilter: | jg.async 2eraLl L = L

‘Name 4 Value
¥ (=-io.asyne.control [Asyncwriteservicesize 20
¥ (= lo.async.control.broadcaster [l BroadeastFilters java.util.Arraylist, size B
» (= io.async.control.cache [ExecutorServicesize
¥ (= lo.async.control.config [HandleExecutors false
i BroadcasterConfig// [scheduledExecutorServicesize

i BroadcasterConfig/ fchat
¥ (= io.async.control.factery
¥ [=l0.asyne.control.interceptors
¥ (=io.async.control.resource
¥ (= I0.async.control.statistics
F Erio.async.control.websocket

io.async.control.factory
Attributes

Contains information about the number of AtmosphereResource,
Broadcaster and WebSocketProcessor

Operations:

You add find AtmosphereResource based on their UUID

MBean Tree

%

MBean Features
Attributes | Operations | Notifications | Metadata

Filter: [jo,async D¢

Name Value

¥ (=io.async.control v [l AtmosphereResources java.util.Arraylist, size 1

¥ (=io.async.control.broadcaster [o] 63422b69-c619-415b-0e@3-58be3d2a3F74
¥ (= io.async.control.cache [count 1

b (= io.async.control.config
¥ (= i0.async.control factory

i AtmosphereResourceFactory
i#® BroadcasterFactory
i WebSocketProcesserFactery
¥ (= ic.async.control.interceptors
P (= ioasync.contral.resource
P (= io.async.control.statistics
¥ (= i0.async.control.websocket

20

io.async.control.interceptors
Attributes

Contains information about the installed Atmospherelnterceptors

Operations:

For example, you can configure on the fly the SuspendTrackerInterceptor.

MBean Tree 1§ MBean Features
Filter: | Attributes | Operations | Notifications | Metadata |
& Mimplemantation Operatians [Name Value
P (7) addTrackedUUID : void
P (7 com.sun.management @a 5
¥
¥ (= io.asyne.control ek

P (= io.async.control.broadcaster
¥ (= i0.asyne.control.cache

P (= i0.async.control.config

F (= io.async.control.factory

¥ (= io.asyne.control.interceptors
AtmosphereResourceLifecyclelnterceptor/chat
CacheHeadersinterceptor
Corsinterceptor
Heartbeatinterceptor
IdleResourcelnterceptor
JavaScriptProtocol
SuspendTrackerlnterceptor

TrackMessageSizelnterceptor
¥ (= io.async.control.statistics

¥ (= io.async.control. websocket

P (= java.lang

= javanio

¥ (= java.util.logging

io.async.control.resource
Attributes

(7) removeTrackedUUID : void

The list of current connected users, or AtmosphereResource.

Operations:

You can close and or resume an existing AtmosphereResource

MBean Tree R MBean Features
Filter 7| Atributes | Operations | Notifications | Metadata |
M —— " [Name & value
P (= Mimplemer Type filter text, e.g. *java* » [l Asyncwriter java.util.Arraylist, size 2
P (=com.sun.management org. phere. config.managed.ManagedAtmosphereHandler
P (= io.async.contrel » O Antributes java.util.HashMap, size 21
P (zio.async.contrel. broadcaster [Broadeaster /chat
» (= in.async.contral.cache [Cancelled false
F [Zio.async.control.config » [] Headers. java.util.HashMap, size 17
¥ (= i0.async.control.factory » [Listeners java.util.Arraylist, size 5
» (= io.asyne.control.interceptors Il Quenystring
¥ (Zi0.async.control resource [RequestDestroyed false
Wi i
¥ (= io.async.contraol statistics [resumed false
b [io.asyne.control websocket I serializer
¥ (= javalang [suspended true
» [GarbageCollector [l Transport WEBSDCKET
¥ (= MemoryManager [UserAgent Mozilla/5.8 (Macintosh; Intel Mac 0S X 18_9_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/37.
¥ = MemoryPool W vuid 4204388c-0dF6-403d-92d5-519538891129
ClassLoading
Compilation
Memory
OperaringSystem
Runtime
Threading
b (= javanio

» 2 java.util logging

Description

Update |
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default

21

io.async.control.statistics
Attributes

Collect statistics about the current number of connections, disconnected
count, total received messages etc.

Operations:

Enable/Disable statistics collection.

MBean Tree «f MBean Features
A T Attributes | Operations | Notifications | Metadata

Name & value

» (= i0.async.control " B Capturingstatson ‘true
(= i0.async.control.broadcaster [cleanDisconnect]
» = i0.async.control .cache [closeCount L}
(= in0.async.control .config [pirtyDisconnect]
(= io.async.control factory W JsenpCount L}
¥ (= io.async.control.interceptors [LongPollingCount L}
¥ (= io.async.control.resource [PollingMessageCount]
¥ (= i0.async.control.statistics [sseCount L]
Atmosphere =] streamingCount]
% BrowserS iD‘stntltoﬂtl’ﬂ\.SIBUS(\(SZNDE:A[MOSDTEITStals-l Tot Jount)
¥ [io.async.control.websocket D TotalLongPollingCount]
[TotalMessageCount i
[ToralsseCount]
[l TotalstreamingCount '}
[TotalwebSocketCount 1
[webSocketCount i

[l webSocketMessageCount 14

io.async.control.websocket
Attributes

Information about how websockets are installed and configured

Operations:

None

MBean Tree 1 MBean Features
Filter: [15.asyne Attributes | Operations | Notifications | Metadata |
Name “value Undate |

» (= io.async.control [ByteBufferMaxSize ‘2097152 Default
¥ (= i0.async.control.broadcaster [l CharBufferMaxSize 2097152 Default
» (=i0.async.control.cache B ClosingTime a Default
P (= io.async.control config [pestroyable false Default
P (2 io.asyne.control.factory [Executeasync false Default
¥ io.async.control.interceptors [Mapper arg.atmosphere.util.Defaul tEndpointMapper Default
P = io.async.control.resource [webSocketHandlers jova.util.HoshMap, size @ Default
P [+ i0.async.control.statistics [l wildcardMapping false Default
¥ (= i0.async.control. websocket

faultWebSocketProcessor

22

Atmosphere Postman

With Guaranteed Delivery, the Atmosphere Postman system uses a built-in data
store to persist messages. Atmosphere Postman guarantees the client that when
sending a message; the message will always be delivered to the server. In case of a
failure, the message will be re-sent until it reaches the server. Postman guarantee
client’s messages delivery.

When combined with Atmosphere Satellite, when a websocket or fallback transport
delivers a message, the send operation does not complete successfully until the
message is safely stored in the sender’s data store. Subsequently, the message is not
deleted from one data store until it is successfully forwarded to and stored in the
next data store. As a result, once a websocket or fallback transport successfully
sends a message, it is also stored in memory on at least one Atmosphere Satellite
until the message has been successfully delivered and acknowledged by the
browser. Installing Satellite and Postman guarantee 100% messages delivery,
both from the browser and the server.

How to install Postman
To install Satellite, all you need to do is to add the following dependency in your
pom.xml:

<dependency>
<groupld>io.async</groupld>
<artifactld>atmosphere-postman</artifactld>
<version>1.0.0</version>

</dependency>

Atmosphere will auto-detect the jar and will install Tower Control automatically.
Once installed, you should see in your log:

17:23:33.409 INFO [main] i.a.p.ClientAckinterceptor [ClientAckInterceptor.java:46]
Atmosphere Postman : io.async.postman.ClientAckInterceptor

17:23:33.409 INFO [main] o.a.c.AtmosphereFramework [AtmosphereFramework.java:2362]
Installed Atmospherelnterceptor io.async.postman.ClientAckinterceptor with priority
AFTER_DEFAULT

17:23:33.409 INFO [main] i.a.p.ReloadAckinterceptor [ReloadAckInterceptor.java:64]

Atmosphere Postman : io.async.postman.ReloadAckInterceptor

23

Installing the client side
Client side, you need to add to you application’s main page

<script type="text/javascript” language="javascript"” src="atmosphere.js"></script>
<script type="text/javascript” language="javascript” src="atmosphere.postman.js"></script>

Callbacks
You can trace and react using two client’s side function

atmosphere.onAckSuccess = function(res) {
console.log("onAckSuccess");
console.log(res);

¥

atmosphere.onAckFailed = function(req) {
console.log("onAckFailed");
console.log(req);

4

How it works

If atmosphere.postman.js is loaded in client and ClientAckInterceptor is included in
interceptor stack in server, when you sends a message using the “push” method, the
followings will happen:

1. AJSON consisting of 'id' and 'message’ is created and sent instead of the message.
2. At the same time, the timer handling ACK is set in client.
3.1 If server receives it,

4.1. ClientAckInterceptor parses that JSON, restore the message and send the ACK
using the id.

4.2, If the ACK is arrived in client, atmosphere.onAckSuccess will be executed with
AtmosphereResponse.

3.1 If server can't receive it,

5.1 After AtmosphereRequest.ackinterval in ms or 5 seconds if it's not set,
atmosphere.onAckFailed will be executed with AtmosphereRequest.

5.2 At the same time, the original message is sent again then the situation goes to
step 1.

24

