

Atmosphere Pro

White Paper
V 4.5.0 @ January 2020

@Copyright 2013-2020 Async-IO.org

Atmosphere Satellite 4

How to install Satellite 5

Reaching the Maximum Atmosphere Pro Licenses 6

Configuring Satellite using Hazelcast’s hazelcast.xml 7

Configuring Satellite using Hazelcast using web.xml only 7

Configuring Satellite using external Hazelcast Support 8

Configuring Satellite using external Hazelcast Client 8

How replication works 9

Broadcaster Replication 9

AtmosphereResource Replication 10

AtmosphereResource Retrieval 11

Message Replication 12

Failing to deliver a message 13

Configuring Satellite Receiver Thread Pool for optimal performance 13

Atmosphere Tower Control 14

Installing Tower Control 14

Starting Tower Control 15

io.async.control.AsyncSupport 17

io.async.control.AtmosphereFramework 18

io.async.control.broadcaster 19

io.async.control.cache 19

io.async.control.config 20

io.async.control.factory 20

io.async.control.interceptors 21

@Copyright 2013-2019 Async-io.org --- 2

io.async.control.resource 21

io.async.control.statistics 22

io.async.control.websocket 22

Atmosphere Postman 23

How to install Postman 23

Installing the client side 24

Callbacks 24

How it works 24

@Copyright 2013-2019 Async-io.org --- 3

Atmosphere Satellite
Applications using Atmosphere Satellite gain the following superpowers:

● Elastic Scalability (just add more servers and they cluster auto magically, i.e.
automatically)

● Super Speeds (in memory transaction speeds)
● High Availability
● Fault Tolerance
● Cloud Readiness
● 100% State Replication of AtmosphereResource, Broadcaster and

BroadcasterCache
● Powered by Hazelcast 3.x (www.hazelcast.org): An In-Memory Data Grid

Atmosphere Satellite is easily able to handle this type of use case with in-memory
performance, linear scalability as you add new nodes and reliability.

Satellite is small and gets transparently enabled by Atmosphere. Because of its
design approach as well as Satellite’s ability to automatically discover and cluster
with peers, Satellite provides drop-in session clustering ability for any Atmosphere
enabled server. It requires no additional investment in hardware and elastically
scales as you add Atmosphere’s application. This is a great way to ensure that
Atmosphere's session state is maintained when you are clustering Atmosphere
servers.

@Copyright 2013-2019 Async-io.org --- 4

How to install Satellite
To install Satellite, all you need to do is to add the following dependency in your
pom.xml:

 <dependency>
 <groupId>io.async</groupId>
 <artifactId>atmosphere-satellite</artifactId>
 <version>2.5.3</version>
 </dependency>

Atmosphere will auto-detect the jar and will install Satellite automatically. Once
installed, you should see in your log:

Sep 12, 2014 11:02:17 AM com.hazelcast.cluster.MulticastJoiner
INFO: [10.0.1.4]:5701 [dev]
Members [1] {

Member [10.0.1.4]:5701 this
}
Sep 12, 2014 11:02:17 AM com.hazelcast.core.LifecycleService
INFO: [10.0.1.4]:5701 [dev] Address[10.0.1.4]:5701 is STARTED
11:02:17.098 INFO [main] i.a.s.Satellite [Satellite.java:81]

Atmosphere Satellite e6ba40a1-29ab-493c-9295-30bcc7a2aaea
11:02:17.106 INFO [main] o.a.c.AtmosphereFramework [AtmosphereFramework.java:1906]
Auto detecting WebSocketHandler in /WEB-INF/classes/

When another Atmosphere Satellite instance is getting installed, the log for the first
installation will show

Sep 12, 2014 11:14:31 AM com.hazelcast.cluster.ClusterService
INFO: [10.0.1.4]:5701 [dev]
Members [2] {

Member [10.0.1.4]:5701 this
Member [10.0.1.4]:5702

}
Addition and removal of Atmosphere Satellite are dynamic and will always be
reflected in the log of each Atmosphere Satellite installation. You can also browse
Satellite’s MBeans using your favorite JMX client under the ‘io.async.satellite’
package.

@Copyright 2013-2019 Async-io.org --- 5

Reaching the Maximum Atmosphere Pro Licenses
If you install more Atmosphere Pro instances than the number bought, any new
instance will throw

io.async.satellite.Satellite$MaxLicensesException: Maximum Licenced Satellite 27
at io.async.satellite.Satellite.dispatchMessage(Satellite.java:164)
at io.async.satellite.Satellite.access$100(Satellite.java:46)
at io.async.satellite.Satellite$2.on(Satellite.java:79)
at

io.async.satellite.HazelcastSatelliteTransport$1.onMessage(HazelcastSatelliteTransport.java:
43)
at com.hazelcast.topic.impl.TopicService.dispatchEvent(TopicService.java:135)
at

com.hazelcast.spi.impl.EventServiceImpl$EventPacketProcessor.process(EventServiceImpl.ja
va:545)
at

com.hazelcast.spi.impl.EventServiceImpl$RemoteEventPacketProcessor.run(EventServiceIm
pl.java:625)
at com.hazelcast.util.executor.StripedExecutor$Worker.process(StripedExecutor.java:189)
at com.hazelcast.util.executor.StripedExecutor$Worker.run(StripedExecutor.java:173)

Please contact licenses@async-io.org for more licenses.

@Copyright 2013-2019 Async-io.org --- 6

mailto:licenses@async-io.org

Configuring Satellite using Hazelcast’s hazelcast.xml
You can configure Hazelcast by following the normal way, as recommended by the
Hazelcast team

http://hazelcast.org/docs/latest/manual/html/config.html

By default, a Hazelcast instance named “AtmosphereSatellite” will be created. If your
application already use a HazelcastInstance or want to create a new instance with a
different name, just define in web/atmosphere.xml:

 <init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.instanceName</ param-name >
 < param-value > <<name>> </ param-value >
 </init-param>

If the HazelcastInstance name exists, it will be picked and if not, created. It is strongly recommended
to configure Hazelcast instance via hazelcast.xml

There might be transient failures when publishing on a topic. Satellite allows to automatically retry a
publish that failed. You can configure it by settings a value for the following init parameters:

io.async.satellite.HazelcastSatelliteTransport.topicPublish.numRetries: Number of retries that Satellite
with do before failing a publish. Default: 0 (no retry).

io.async.satellite.HazelcastSatelliteTransport.topicPublish.delaySeconds: delay in seconds before
retrying a publish that failed. Default: 1.

Configuring Satellite using Hazelcast using web.xml only
If your application only use Hazelcast TCP/IP configuration, you can also configure
it directly using the following properties

<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.tcpIp.enabled</param-name>
 <param-value>true</param-value>
</init-param>

<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.tcpIp.members</param-name>
 <param-value>5701</param-value>
</init-param>

<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.group.name</param-name>
 <param-value>opd-poc</param-value>
 </init-param>

<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.group.password</param-name>
 <param-value>opd-poc-pass</param-value>

@Copyright 2013-2019 Async-io.org --- 7

Configuring Satellite using external Hazelcast Support
You can configure Satellite’s internal Hazelcast instance by implementing an HazelcastConfigurator:

package io.async.satellite;

import com.hazelcast.core.HazelcastInstance;
import org.atmosphere.cpr.AtmosphereConfig;

public interface HazelcastConfigurator {

 HazelcastInstance getOrCreateHazelcastInstance(AtmosphereConfig config);

}
and by defining

<init-param>
 <param-name>io.async.satellite.HazelcastConfigurator.className</param-name>
 <param-value>xxxxx</param-value>
</init-param>

Configuring Satellite using external Hazelcast Client
If you already have a running Hazelcast instance, you can also configure Satellite to use it instance by
adding to your configuration file:

<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.useClient</param-name>
 <param-value>true</param-value>
</init-param>
<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.address</param-name>
 <param-value>127.0.0.1:5701</param-value>
</init-param>

@Copyright 2013-2019 Async-io.org --- 8

How replication works
A Satellite always publishes its state at the moment it changes. Changing states
includes:

● Broadcaster: when a Broadcaster is created by one Satellite, a message will
be sent to all others Satellites, asking them to create the Broadcaster. Hence
all available Satellites will have the same set of created Broadcasters. The
same will happen when a Broadcaster is destroyed from one of the Satellite,
e.g. the removal will also be execute by all Atmosphere Satellite.

● AtmosphereResource: when an AtmosphereResource is created (when a
users/browsers connects), a message will be sent to all others Satellites,
asking them to register the AtmosphereResource’s UUID with its associated
broadcaster. When an AtmosphereResource gets registered with a
Broadcaster, the AtmosphereResource becomes candidate for message
caching. The same will happens when an AtmosphereResource gets removed.

● BroadcasterCache: BroadcasterCache are tightly coupled with Broadcaster.
Hence, BroadcasterCache are getting created everytime a Broadcaster is.
Every time a new AtmosphereResource is added to a Broadcaster, a message
will be sent to all others Satellites, and the AtmosphereResource’s UUID will
be added to the list of active BroadcasterCache’s.

Broadcaster Replication
As noted, Broadcaster are getting replicated by following:

1. In a Satellite, a Broadcaster is getting created (#1)
2. The Satellite send a message to other Satellites (#2)
3. The Broadcaster is created in the other Satellite (#3)

@Copyright 2013-2019 Async-io.org --- 9

AtmosphereResource Replication
When a user/browser connect, an AtmosphereResource is always created. With
Satellite, the UUID of that AtmosphereResource will be shared amongst the
Satellites:

1. Browser connects
2. AtmosphereResource gets created
3. The Atmosphere’s UUID is sent to all Satellites
4. The UUID is registered with BroadcasterCache. Registering UUID with

BroadcasterCache means message will be cached for that resource unless
one of the Satellite successfully deliver the message.

@Copyright 2013-2019 Async-io.org --- 10

AtmosphereResource Retrieval
It is possible to retrieve an AtmosphereResource located on another node by using
the AtmosphereResourceFactory.locate(uuid, Async) API. Under the hood class
AtmosphereResourceFactory will communicates with the remove Satellites and
create a local “stub” for the remote AtmosphereResource if located.

factory.locate(message.getMessage(), new
AtmosphereResourceFactory.Async() {
 @Override
 public void available(AtmosphereResource r) {
 // Do something with the resource
 r.write(“Hello World”);
 }
});

The operation of locating an AtmosphereResource is asynchronous, and it is left to
the application developer to block in case of the retrieval must be done
synchronously:

final AtomicReference<AtmosphereResource> resource
 = new AtomicReference<AtmosphereResource>();
final CountDownLatch latch = new CountDownLatch(1);

factory.locate(message.getMessage(), new
AtmosphereResourceFactory.Async() {
 @Override
 public void available(AtmosphereResource r) {
 resource.set(r);
 latch.countDown();
 }
});
latch.await();

AtmosphereResource stub = resource.get();
stub.write("Hello World");

@Copyright 2013-2019 Async-io.org --- 11

Message Replication
When a message is broadcasted in one Satellite, the message will be sent to all
Satellites, which in turn will broadcast to their set of AtmosphereResources and
cached for AtmosphereResource not located on that Satellite.

As soon as the message is successfully delivered in one Satellite, the information will
be sent to all other Satellites so they can remove the message from their
BroadcasterCache.

@Copyright 2013-2019 Async-io.org --- 12

Failing to deliver a message
If, for any reason the message is not delivered to the AtmosphereResource, the
message will stay in all Satellite’s BroadcasterCache so when the browser
reconnects using its previous AtmosphereResource’s UUID, the message will be
pulled from the cache and send. Then all Satellites will be advised the message has
been delivered and

Configuring Satellite Receiver Thread Pool for optimal performance
If your application sends and receives thousand of messages, it is important to
properly configure the Satellite’s receiver thread pool size:

<init-param>
 <param-name>io.async.satellite.HazelcastSatelliteTransport.threadPoolSize</param-name>
 <param-value>200</param-value>
</init-param>

By default, the number of available processors will be used.

@Copyright 2013-2019 Async-io.org --- 13

Atmosphere Tower Control
Atmosphere Tower Control is designed with ease of use and flexibility in mind and
delivers unprecedented power to Atmosphere’s Developers. Atmosphere Tower
Control is a complete ecosystem for developers, offering a complete end to end
solution for monitoring an debugging an Atmosphere application.

Tower Control offers the ability to completely configure Atmosphere, collect
statistics, reload Atmosphere applications and hot swamp an Atmosphere
applications remotely.

Installing Tower Control
To install Satellite, all you need to do is to add the following dependency in your
pom.xml:

 <dependency>
 <groupId>io.async</groupId>
 <artifactId>atmosphere-tower-control</artifactId>
 <version>2.4.6</version>
 </dependency>

Atmosphere will auto-detect the jar and will install Tower Control automatically.
Once installed, you should see in your log:

11:56:17.411 INFO [main] o.a.c.AnnotationHandler [AnnotationHandler.java:63] Found
Annotation in class io.async.control.TowerControlInterceptor being scanned: interface
org.atmosphere.config.service.AtmosphereInterceptorService

11:56:17.537 INFO [main] i.a.c.TowerControlInterceptor [TowerControlInterceptor.java:58]

 Atmosphere Tower Control

11:56:17.538 INFO [main] o.a.c.AnnotationHandler [AnnotationHandler.java:63] Found
Annotation in class io.async.control.TowerConttrolListener being scanned: interface
org.atmosphere.config.service.BroadcasterListenerService

@Copyright 2013-2019 Async-io.org --- 14

Starting Tower Control
To start Tower Control, all you need to have is a tool supporting JMX. For example,
both Java Mission Control(JMC) and jVisualVM supports JMX. Let’s assume we will
use JMC. To start JMC, just do:

% jmc

Next, select under the JVM Browser Tab, select the Java process, which started your
Atmosphere Application. On the right side, select the MBean Tab. You should see

@Copyright 2013-2019 Async-io.org --- 15

To make things simpler, type io.async in the Filter field, so we just see Tower
Control Beans

All the Atmosphere’s MBeans are grouped by type:

● io.async.control: Contains information about installed AsyncSupport and
AtmosphereFramework classes.

● io.async.control.broadcaster: The current set of created Broadcaster with
their associated state.

● io.async.control.cache: The current set of created BroadcasterCache with
their associated state.

● io.async.control.factory: The BroadcasterFactory,
AtmosphereResourceFactory and WebSocketProcessorFactory with their
associated state.

● io.async.control.interceptors: The current set of installed
AtmosphereInterceptor with their associated state.

● io.async.control.resource: The current set of connected clients, represented
by their AtmosphereResource.

● io.async.statistics: Live statistic like number of connections, messages,
transport used as well as Browser’s used.

@Copyright 2013-2019 Async-io.org --- 16

● io.async.control.websocket: Contains information about installed
WebSocketProcessor

Let’s explore them one by one and see what kind of information is available from
those beans.

io.async.control.AsyncSupport
Attributes

Contains information about the server used and if websocket is supported or
not.

Operations:

No operation available

@Copyright 2013-2019 Async-io.org --- 17

io.async.control.AtmosphereFramework
Attributes

Contains information about how Atmosphere has been started and
configured. Everything configured by default or via web/application.xml is
getting reflected.

Operations:

You can reconfigure the AtmosphereFramework via the MBean’s operations.
For example, you can add BroadcasterListener, init-params etc. and then click
on reload to reconfigure the AtmosphereFramework.

@Copyright 2013-2019 Async-io.org --- 18

io.async.control.broadcaster
Attributes

Contains information about the current state of a Broadcaster. For example,
the AtmosphereResource, the number of them, the installed
BroadcasterListener, etc.

Operations:

Several operations are available, like adding, on the fly, AtmosphereResource,
broadcasting messages, resuming AtmosphereResources etc.

io.async.control.cache
Attributes

Contains information about the current state of the BroadcasterCache like
active AtmosphereResource, installed listeners etc.

Operations:

Message can be added,excluded or deleted from the cache

@Copyright 2013-2019 Async-io.org --- 19

io.async.control.config
Attributes

Contains information about the BroadcasterConfig likes Thread, Thread Pool,
etc.

Operations:

You can destroy or remove BroadcastFilter

io.async.control.factory
Attributes

Contains information about the number of AtmosphereResource,
Broadcaster and WebSocketProcessor

Operations:

You add find AtmosphereResource based on their UUID

@Copyright 2013-2019 Async-io.org --- 20

io.async.control.interceptors
Attributes

Contains information about the installed AtmosphereInterceptors

Operations:

For example, you can configure on the fly the SuspendTrackerInterceptor.

io.async.control.resource
Attributes

The list of current connected users, or AtmosphereResource.

Operations:

You can close and or resume an existing AtmosphereResource

@Copyright 2013-2019 Async-io.org --- 21

io.async.control.statistics
Attributes

Collect statistics about the current number of connections, disconnected
count, total received messages etc.

Operations:

Enable/Disable statistics collection.

io.async.control.websocket
Attributes

Information about how websockets are installed and configured

Operations:

None

@Copyright 2013-2019 Async-io.org --- 22

Atmosphere Postman
With Guaranteed Delivery, the Atmosphere Postman system uses a built-in data
store to persist messages. Atmosphere Postman guarantees the client that when
sending a message; the message will always be delivered to the server. In case of a
failure, the message will be re-sent until it reaches the server. Postman guarantee
client’s messages delivery.

When combined with Atmosphere Satellite, when a websocket or fallback transport
delivers a message, the send operation does not complete successfully until the
message is safely stored in the sender’s data store. Subsequently, the message is not
deleted from one data store until it is successfully forwarded to and stored in the
next data store. As a result, once a websocket or fallback transport successfully
sends a message, it is also stored in memory on at least one Atmosphere Satellite
until the message has been successfully delivered and acknowledged by the
browser. Installing Satellite and Postman guarantee 100% messages delivery,
both from the browser and the server.

How to install Postman
To install Satellite, all you need to do is to add the following dependency in your
pom.xml:

 <dependency>
 <groupId>io.async</groupId>
 <artifactId>atmosphere-postman</artifactId>
 <version>1.0.0</version>
 </dependency>

Atmosphere will auto-detect the jar and will install Tower Control automatically.
Once installed, you should see in your log:

17:23:33.409 INFO [main] i.a.p.ClientAckInterceptor [ClientAckInterceptor.java:46]

 Atmosphere Postman : io.async.postman.ClientAckInterceptor

17:23:33.409 INFO [main] o.a.c.AtmosphereFramework [AtmosphereFramework.java:2362]
Installed AtmosphereInterceptor io.async.postman.ClientAckInterceptor with priority
AFTER_DEFAULT

17:23:33.409 INFO [main] i.a.p.ReloadAckInterceptor [ReloadAckInterceptor.java:64]

 Atmosphere Postman : io.async.postman.ReloadAckInterceptor

@Copyright 2013-2019 Async-io.org --- 23

Installing the client side
Client side, you need to add to you application’s main page

 <script type="text/javascript" language="javascript" src="atmosphere.js"></script>

 <script type="text/javascript" language="javascript" src="atmosphere.postman.js"></script>

Callbacks
You can trace and react using two client’s side function

 atmosphere.onAckSuccess = function(res) {

 console.log("onAckSuccess");

 console.log(res);

 };

 atmosphere.onAckFailed = function(req) {

 console.log("onAckFailed");

 console.log(req);

 };

How it works
If atmosphere.postman.js is loaded in client and ClientAckInterceptor is included in
interceptor stack in server, when you sends a message using the `push` method, the
followings will happen:

1. A JSON consisting of 'id' and 'message' is created and sent instead of the message.

2. At the same time, the timer handling ACK is set in client.

3.1 If server receives it,

 4.1. ClientAckInterceptor parses that JSON, restore the message and send the ACK
using the id.

 4.2. If the ACK is arrived in client, atmosphere.onAckSuccess will be executed with
AtmosphereResponse.

3.1 If server can't receive it,

 5.1 After AtmosphereRequest.ackInterval in ms or 5 seconds if it's not set,
atmosphere.onAckFailed will be executed with AtmosphereRequest.

 5.2 At the same time, the original message is sent again then the situation goes to
step 1.

@Copyright 2013-2019 Async-io.org --- 24

